LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and piezoelectric properties of ultra-thin ScxAl1−xN films grown on GaN by molecular beam epitaxy

Photo from academic.microsoft.com

ScxAl1−xN (x = 0.18–0.40) thin films of ∼28 nm thickness grown on metal polar GaN substrates by molecular beam epitaxy are found to exhibit smooth morphology with less than 0.5 nm roughness and predominantly… Click to show full abstract

ScxAl1−xN (x = 0.18–0.40) thin films of ∼28 nm thickness grown on metal polar GaN substrates by molecular beam epitaxy are found to exhibit smooth morphology with less than 0.5 nm roughness and predominantly single-phase wurtzite crystal structure throughout the composition range. Measurement of the piezoelectric d33 coefficient shows a 150% increase for lattice-matched Sc0.18Al0.82N relative to pure aluminum nitride, whereas higher Sc contents exhibit lower piezoelectric coefficients. The electromechanical response of the epitaxial films correlates with the crystal quality and the presence of zinc blende inclusions, as observed by high-resolution electron microscopy. It is further found that the polarity of the epitaxial ScxAl1−xN layers is locked to the underlying substrate. The measured electromechanical properties of epitaxial ScxAl1−xN, their relation to the atomic crystal structure and defects, and its crystal polarity provide useful guidance toward the applications of this material.

Keywords: structural piezoelectric; piezoelectric properties; scxal1; molecular beam; beam epitaxy

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.