LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical investigation of engulfment flow at low Reynolds numbers in a T-shaped microchannel

Photo from wikipedia

Microreactors play a major role in the intensification of industrial processes. The performance of microfluidic devices depends on the flow behavior and flow regimes present in such systems. In this… Click to show full abstract

Microreactors play a major role in the intensification of industrial processes. The performance of microfluidic devices depends on the flow behavior and flow regimes present in such systems. In this work, single-phase flow behavior and associated flow regimes in a T-shaped microchannel are numerically analyzed using computational fluid dynamics (CFD). To predict the single-phase flow regimes, three dimensional transient CFD simulations are performed. The critical Reynolds number (Re) at which flow regime transition and onset of engulfment occur is identified (Recritical = 300). To achieve engulfment flow at lower Re, the inlet geometry of the microchannel is modified as a convergent (C)–divergent (D) section and its effect on engulfment flow is analyzed. When the C/D ratio is 9:1, the predicted pressure drop (Δp) is found to be minimum (Recritical = 75, Δp = 5.4 kPa). The understanding of the engulfment flow regime is exploited through residence time distribution (RTD). The predicted RTD profiles indicate strong recirculation among vortices. The mixing index is calculated to quantify RTD, and it is found to be minimum when the C/D ratio is 9:1. The mixing performance is further verified by introducing buoyant particles in Lagrangian manner using discrete phase modeling. The predicted dynamics are qualitatively and quantitatively analyzed through Poincare maps and Shannon’s entropy for various convergent–divergent inlets to characterize mixing. Once again, the C/D ratio of 9:1 supports in enhancing mixing in the microchannel. Hence, the proposed micromixer based on geometric modifications at the inlet helps achieve the engulfment flow regime at low Re.

Keywords: engulfment flow; flow regime; engulfment; flow regimes; shaped microchannel; flow

Journal Title: Physics of Fluids
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.