The coronavirus disease 2019 (COVID-19) outbreak, due to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), originated in Wuhan, China and is now a global pandemic. The unavailability of vaccines, delays… Click to show full abstract
The coronavirus disease 2019 (COVID-19) outbreak, due to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), originated in Wuhan, China and is now a global pandemic. The unavailability of vaccines, delays in diagnosis of the disease, and lack of proper treatment resources are the leading causes of the rapid spread of COVID-19. The world is now facing a rapid loss of human lives and socioeconomic status. As a mathematical model can provide some real pictures of the disease spread, enabling better prevention measures. In this study, we propose and analyze a mathematical model to describe the COVID-19 pandemic. We have derived the threshold parameter basic reproduction number, and a detailed sensitivity analysis of this most crucial threshold parameter has been performed to determine the most sensitive indices. Finally, the model is applied to describe COVID-19 scenarios in India, the second-largest populated country in the world, and some of its vulnerable states. We also have short-term forecasting of COVID-19, and we have observed that controlling only one model parameter can significantly reduce the disease's vulnerability.
               
Click one of the above tabs to view related content.