LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extracting Non-Gaussian Governing Laws from Data on Mean Exit Time

Photo from wikipedia

Motivated by the existing difficulties in establishing mathematical models and in observing state time series for some complex systems, especially for those driven by non-Gaussian Lévy motion, we devise a… Click to show full abstract

Motivated by the existing difficulties in establishing mathematical models and in observing state time series for some complex systems, especially for those driven by non-Gaussian Lévy motion, we devise a method for extracting non-Gaussian governing laws with observations only on the mean exit time. It is feasible to observe the mean exit time for certain complex systems. With such observations, we use a sparse regression technique in the least squares sense to obtain the approximated function expression of the mean exit time. Then, we learn the generator and further identify the governing stochastic differential equation by solving an inverse problem for a nonlocal partial differential equation and minimizing an error objective function. Finally, we verify the efficacy of the proposed method by three examples with the aid of the simulated data from the original systems. Results show that our method can apply to not only the stochastic dynamical systems driven by Gaussian Brownian motion but also those driven by non-Gaussian Lévy motion, including those systems with complex rational drift.

Keywords: extracting non; non gaussian; time; exit time; mean exit

Journal Title: Chaos
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.