LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing edge condition of nanoscale CoFeB/MgO magnetic tunnel junctions by spin-wave resonance

Photo from wikipedia

We investigate spin-wave resonance in nanoscale CoFeB/MgO magnetic tunnel junctions (MTJs) with a perpendicular easy axis and various free-layer sizes. Two types of MTJs are fabricated by different process conditions,… Click to show full abstract

We investigate spin-wave resonance in nanoscale CoFeB/MgO magnetic tunnel junctions (MTJs) with a perpendicular easy axis and various free-layer sizes. Two types of MTJs are fabricated by different process conditions, and the spin-wave resonance is measured with homodyne-detected ferromagnetic resonance. We focus on the distance between resonance frequencies of the uniform and spin-wave modes as a function of the free-layer size in order to examine the effect of the edge state of MTJs. A marked difference is observed between the two types of MTJs, and the result is consistently reproduced by a model assuming free- or fixed-edge boundary conditions with or without reduced magnetic properties near the pattern edge for each MTJ. The obtained results indicate that the edge state of nanoscale MTJs is crucially affected by the process condition, and spin-wave resonance can serve as a sensitive probe for the edge condition.

Keywords: spin wave; resonance; condition; wave resonance; edge; nanoscale cofeb

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.