LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-photon emission from two-dimensional hexagonal boron nitride annealed in a carbon-rich environment

Photo by kmitchhodge from unsplash

For quantum photonic applications, such as quantum communication, optical quantum information processing, and metrology, solid-state sources of single-photon emitters are highly needed. Recently, single-photon emitters in two-dimensional (2D) van der… Click to show full abstract

For quantum photonic applications, such as quantum communication, optical quantum information processing, and metrology, solid-state sources of single-photon emitters are highly needed. Recently, single-photon emitters in two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their atomic thickness, allowing for high photon extraction efficiency and easy integration into photonic circuits. In particular, a defect hosted by 2D hexagonal boron nitride (hBN) is expected to be a promising candidate for next-generation single-photon sources due to its chemical and thermal stability and high brightness at room temperature. Here, we report an effective method for generating single-photon emission in mechanically exfoliated hBN flakes by annealing in a carbon-rich environment. The one-step annealing in a mixed atmosphere (Ar:CH4:H2 = 15:5:1) greatly increases the single-photon emitter density in hBN. The resulting single-photon emission shows high stability and brightness. Our results provide an effective method for generating room-temperature single-photon emitters in 2D hBN.

Keywords: photon; photon emission; hexagonal boron; two dimensional; single photon

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.