In this work, the relevance of the multi-phase thermodynamic model based on the vapor–liquid equilibrium (VLE) assumption over the single-phase model is discussed. An emphasis on the importance of the… Click to show full abstract
In this work, the relevance of the multi-phase thermodynamic model based on the vapor–liquid equilibrium (VLE) assumption over the single-phase model is discussed. An emphasis on the importance of the non-linear coupling between thermodynamic, transport, and governing equations is given from a macroscopic point of view by analyzing the mixing effects on a spatial mixing layer in real-gas (non-ideal) conditions. The goal is to prove the existence of an important difference between the two thermodynamic models and, therefore, establish the foundations on the effects that VLE induces in a fluid flow. The results indicate that differences in micro-mixing, ultimately changing the vortex dynamics, are directly related to the imbalance between the heat and mass transfer that occurs within the VLE mixing region of a shear layer.
               
Click one of the above tabs to view related content.