LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiplex recurrence networks from multi-lead ECG data.

Photo from wikipedia

We present an integrated approach to analyze the multi-lead electrocardiogram (ECG) data using the framework of multiplex recurrence networks (MRNs). We explore how their intralayer and interlayer topological features can… Click to show full abstract

We present an integrated approach to analyze the multi-lead electrocardiogram (ECG) data using the framework of multiplex recurrence networks (MRNs). We explore how their intralayer and interlayer topological features can capture the subtle variations in the recurrence patterns of the underlying spatio-temporal dynamics of the cardiac system. We find that MRNs from ECG data of healthy cases are significantly more coherent with high mutual information and less divergence between respective degree distributions. In cases of diseases, significant differences in specific measures of similarity between layers are seen. The coherence is affected most in the cases of diseases associated with localized abnormality such as bundle branch block. We note that it is important to do a comprehensive analysis using all the measures to arrive at disease-specific patterns. Our approach is very general and as such can be applied in any other domain where multivariate or multi-channel data are available from highly complex systems.

Keywords: multi lead; ecg data; recurrence; multiplex recurrence; recurrence networks

Journal Title: Chaos
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.