LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling, simulation, and optimization of electrowetting-on-dielectric (EWOD) devices.

Photo by alonsoreyes from unsplash

With widespread research studies on electrowetting-on-dielectric (EWOD) for droplet manipulation in the field of lab-on-a-chip, how to improve the driving capability of droplets has increasingly attracted enormous interest. Aiming to… Click to show full abstract

With widespread research studies on electrowetting-on-dielectric (EWOD) for droplet manipulation in the field of lab-on-a-chip, how to improve the driving capability of droplets has increasingly attracted enormous interest. Aiming to decrease driving voltages and improve driving effectiveness, this paper studies the modeling, simulation, and optimization of EWOD devices. The theoretical model is refined mainly in consideration of the saturation effect of the contact angle and then verified by both simulation and experiments. As a design guide to decrease the driving voltage, a theoretical criterion of droplet splitting, the most difficult one among four basic droplet manipulations, is developed and then verified by experimental results. Moreover, a novel sigmoid electrode shape is found by the optimization method based on finite element analysis and achieves better driving effectiveness and consistent bidirectional driving capability, compared with the existing electrode shapes. Taken together, this paper provides an EWOD analysis and optimization method featuring a lower voltage and a better effectiveness and opens up opportunities for optimization designs in various EWOD-based applications.

Keywords: modeling simulation; dielectric ewod; electrowetting dielectric; optimization; ewod

Journal Title: Biomicrofluidics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.