LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitigation of Rayleigh-like waves in granular media via multi-layer resonant metabarriers

Photo from wikipedia

In this work, we experimentally and numerically investigate the propagation and attenuation of vertically polarized surface waves in an unconsolidated granular medium equipped with small-scale metabarriers of different depths, i.e.,… Click to show full abstract

In this work, we experimentally and numerically investigate the propagation and attenuation of vertically polarized surface waves in an unconsolidated granular medium equipped with small-scale metabarriers of different depths, i.e., arrays composed of one, two, and three embedded layers of sub-wavelength resonators. Our findings reveal how such a multi-layer arrangement strongly affects the attenuation of the surface wave motion within and after the barrier. When the surface waves collide with the barriers, the wavefront is back-scattered and steered downward underneath the oscillators. Due to the stiffness gradient of the granular medium, part of the wavefield is then rerouted to the surface level after overcoming the resonant array. Overall, the in-depth insertion of additional layers of resonators leads to a greater and broader band wave attenuation when compared to the single layer case.

Keywords: rayleigh like; mitigation rayleigh; layer; surface; multi layer; like waves

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.