LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of polymer swell in extrusion foaming of low-density polyethylene

Photo from wikipedia

Insights into the effect of die swell on extrusion foam of thermoplastic polymers are presented. The die swell or Barus effect is the swelling of a viscoelastic material due to… Click to show full abstract

Insights into the effect of die swell on extrusion foam of thermoplastic polymers are presented. The die swell or Barus effect is the swelling of a viscoelastic material due to a fast elastic recovery after being subjected to stress. The elastic recovery is proportional to the energy stored in the material during the deformation that is released immediately when the material is free to expand. In extrusion foam, the elastic recovery happens at the die exit together with the foaming process (i.e., bubble nucleation and growth). Previous reports on extrusion have focused on modeling the die swell or foaming individually. We investigated the existence of a link between the die swell and foaming that is fundamental in designing the geometry of a die for extrusion foam. Simple and complex dies were used to measure the expansion ratio of a polyethylene blown with isobutane and CO2. It was found that the expansion ratio is anisotropic, the anisotropy in the expansion of the foam is due to the die swell strongly affecting the final shape of the product, and it cannot be neglected in standard application for extrusion foam. Surprisingly, it was found that the foam density changes at a high level of die swell because it is affected by the elastic recovery of the material.

Keywords: effect; extrusion; die swell; swell extrusion

Journal Title: Physics of Fluids
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.