LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coarse grained simulations of shock-driven turbulent material mixing

Photo by johnmarkarnold from unsplash

We revisit coarse-grained simulation strategies for turbulent material mixing applications involving shock-driven turbulence in the context of the Radiation Adaptive Grid Eulerian (xRAGE) hydrodynamics and Besnard–Harlow–Rauenzahn (BHR) Reynolds-averaged Navier–Stokes codes,… Click to show full abstract

We revisit coarse-grained simulation strategies for turbulent material mixing applications involving shock-driven turbulence in the context of the Radiation Adaptive Grid Eulerian (xRAGE) hydrodynamics and Besnard–Harlow–Rauenzahn (BHR) Reynolds-averaged Navier–Stokes codes, using newly available Low-Mach-Corrected (LMC) xRAGE hydrodynamics. Impact assessments are based on comparisons with a relevant shock-tube experiment for which turbulent mixing and velocity data are available. xRAGE Implicit Large-Eddy Simulation (ILES) and a recently proposed xRAGE-BHR bridging paradigm are tested. Bridging models turbulent stresses dynamically, based on decomposing the full stress into modeled and resolved components, using a differential filter as a secondary filtering operation to define the resolved part, and additionally requiring the resolved stress to approach the full stress with grid resolution refinement to ensure realizability of the bridging-based large-eddy simulation. Much improved scale-resolving with LMC-xRAGE ILES and with dynamic LMC-xRAGE/BHR bridging enables higher simulated mixing and turbulence levels on coarser grids. For the tested planar shock-tube case, the more-accurate models can achieve the same level of accuracy with less resolution than required with the highest-fidelity turbulence simulation models typically used at scale with default xRAGE hydrodynamics; two-levels of grid-coarsening savings can be thus achieved for the mixing prediction in these comparisons: one associated with the more-accurate LMC xRAGE hydrodynamics and an additional one from using the dynamic xRAGE-BHR bridging.

Keywords: turbulent material; xrage; hydrodynamics; shock driven; material mixing; coarse grained

Journal Title: Physics of Fluids
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.