LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential vorticity transport in weakly and strongly magnetized plasmas

Photo by glenncarstenspeters from unsplash

Tangled magnetic fields, often coexisting with an ordered mean field, have a major impact on turbulence and momentum transport in many plasmas, including those found in the solar tachocline and… Click to show full abstract

Tangled magnetic fields, often coexisting with an ordered mean field, have a major impact on turbulence and momentum transport in many plasmas, including those found in the solar tachocline and magnetic confinement devices. We present a novel mean field theory of potential vorticity mixing in β-plane magnetohydrodynamic (MHD) and drift wave turbulence. Our results show that mean square stochastic fields strongly reduce Reynolds stress coherence. This decoherence of potential vorticity flux due to stochastic field scattering leads to suppression of momentum transport and zonal flow formation. A simple calculation suggests that the breaking of the shear-eddy tilting feedback loop by stochastic fields is the key underlying physics mechanism. A dimensionless parameter that quantifies the increment in power threshold is identified and used to assess the impact of stochastic field on the L-H transition. We discuss a model of stochastic fields as a resisto-elastic network.

Keywords: field; transport; physics; stochastic fields; potential vorticity

Journal Title: Physics of Plasmas
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.