LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coordination isomerism in spin crossover (SCO) materials

Photo from wikipedia

A new series of three spin crossover (SCO) Fe(II) complexes based on a cyanocarbanion and on the neutral quinolin-8-amine (aqin) ligands, [Fe(aqin)2(tcnsme)2] (1), [Fe(aqin)2(tcnset)2] (2), and [Fe(aqin)2(tcnspr)2] (3), has been… Click to show full abstract

A new series of three spin crossover (SCO) Fe(II) complexes based on a cyanocarbanion and on the neutral quinolin-8-amine (aqin) ligands, [Fe(aqin)2(tcnsme)2] (1), [Fe(aqin)2(tcnset)2] (2), and [Fe(aqin)2(tcnspr)2] (3), has been studied. The three complexes display similar molecular structures consisting of discrete [Fe(aqin)2(tcnsR)2] complexes [R = Me (1), Et (2), and Pr (3)]. Infrared spectroscopy and magnetic studies, performed on the three complexes, revealed the presence of similar SCO behaviors which strongly differ by their transition temperatures [234 K (1) < 266 K (2) < 360 K (3)]. The increase of the transition temperatures when passing from 1 to 3 may be explained by electronic and packing effects. Thus, when passing from Me (1) to Et (2) and Pr (3), the electron donor effect increases, resulting in an increase of the ligand field and, accordingly, in an increase of the transition temperature. On the other side, examination of the different coordination modes of the cyanocarbanions in the three complexes clearly reveals the crucial role of these coordination modes on the crystal packing and, therefore, on the transition temperature. We can, therefore, attribute the important increase of the transition temperature from complexes 1 to 3 to both effects: the electron donor character of the alkyl groups and the packing effects of the versatile cycnocarbanion ligands.

Keywords: sco; spin crossover; transition; crossover sco

Journal Title: Journal of Applied Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.