LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low dimensional manifolds in reservoir computers.

Photo from wikipedia

A reservoir computer is a complex dynamical system, often created by coupling nonlinear nodes in a network. The nodes are all driven by a common driving signal. Reservoir computers can… Click to show full abstract

A reservoir computer is a complex dynamical system, often created by coupling nonlinear nodes in a network. The nodes are all driven by a common driving signal. Reservoir computers can contain hundreds to thousands of nodes, resulting in a high dimensional dynamical system, but the reservoir computer variables evolve on a lower dimensional manifold in this high dimensional space. This paper describes how this manifold dimension depends on the parameters of the reservoir computer, and how the manifold dimension is related to the performance of the reservoir computer at a signal estimation task. It is demonstrated that increasing the coupling between nodes while controlling the largest Lyapunov exponent of the reservoir computer can optimize the reservoir computer performance. It is also noted that the sparsity of the reservoir computer network does not have any influence on performance.

Keywords: low dimensional; reservoir computer; reservoir computers; dimensional manifolds; computer

Journal Title: Chaos
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.