LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic and catalytic engineering in two-dimensional vdW metal–organic frameworks through alloying

Photo from wikipedia

Bimetallic metal-organic framework (MOFs) alloys, in which heterogeneous metal clusters are incorporated into their backbone, are capable of highly selective separations and catalysis. Due to limitations in our fundamental understanding… Click to show full abstract

Bimetallic metal-organic framework (MOFs) alloys, in which heterogeneous metal clusters are incorporated into their backbone, are capable of highly selective separations and catalysis. Due to limitations in our fundamental understanding of their alloying, however, established methods result in phase-separated or amorphous two-dimensional (2D) MOFs or lack precise control over alloy ratios. Here, our results demonstrate 2D MOF alloys where metal cation ratios (M1 and M2) in M1xM21-xBDC (M1 or M2= Zn, Cu, Ni, Co, Fe, Mn) can be engineered on demand by controlling the metal salt dissociation constants. Resulting MOF alloys exhibit a highly 2D nature with excellent crystallinity and minute control over metal cation ratios. Our experimental and theoretical results show that their electronic bandgaps and photoexcited carrier lifetimes can be engineered by metal cation alloying. Interestingly, 2D alloyed MOFs enable high-efficiency photo-catalytic water reduction performance in Co/Ni MOF alloys owing to the spatially separated metal clusters in 2D MOF alloys.

Keywords: electronic catalytic; metal cation; metal organic; two dimensional; metal; mof alloys

Journal Title: Applied physics reviews
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.