LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bandgap bowing parameter and alloy fluctuations for β-(AlxGa1−x)2O3 alloys for x ≤ 0.35 determined from low temperature optical reflectivity

Photo by kellysikkema from unsplash

A bandgap bowing parameter of 0.4 ± 0.2 eV for β-(AlxGa1−x)2O3 alloys, with Al compositions (x) up to 0.35, has been determined from the bandgap obtained from low temperature optical reflectivity,… Click to show full abstract

A bandgap bowing parameter of 0.4 ± 0.2 eV for β-(AlxGa1−x)2O3 alloys, with Al compositions (x) up to 0.35, has been determined from the bandgap obtained from low temperature optical reflectivity, which suppresses the effect of electron–phonon interaction on the bandgap. A length scale of inhomogeneity of 0.21 ± 0.03 times of the electron–hole mean free path length has been estimated for β-(AlxGa1−x)2O3 alloys. The unit cell of β-(AlxGa1−x)2O3 alloys compresses, and the lattice parameters vary linearly with Al substitution. Our results provide insight into bandgap engineering and alloy disorder for β-(AlxGa1−x)2O3 alloys, which are an important material system for applications in deep ultraviolet opto-electronic devices.

Keywords: low temperature; alxga1 2o3; bandgap bowing; bowing parameter; 2o3 alloys

Journal Title: AIP Advances
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.