LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synchronization transition in the two-dimensional Kuramoto model with dichotomous noise.

Photo from wikipedia

We numerically study the celebrated Kuramoto model of identical oscillators arranged on the sites of a two-dimensional periodic square lattice and subject to nearest-neighbor interactions and dichotomous noise. In the… Click to show full abstract

We numerically study the celebrated Kuramoto model of identical oscillators arranged on the sites of a two-dimensional periodic square lattice and subject to nearest-neighbor interactions and dichotomous noise. In the nonequilibrium stationary state attained after a long time, the model exhibits a Berezinskii-Kosterlitz-Thouless (BKT)-like transition between a phase at a low noise amplitude characterized by quasi long-range order (critically ordered phase) and an algebraic decay of correlations and a phase at a high noise amplitude that is characterized by complete disorder and an exponential decay of correlations. The interplay between the noise amplitude and the noise-correlation time is investigated, and the complete, nonequilibrium stationary-state phase diagram of the model is obtained. We further study the dynamics of a single topological defect for various amplitudes and correlation time of the noise. Our analysis reveals that a finite correlation time promotes vortex excitations, thereby lowering the critical noise amplitude of the transition with an increase in correlation time. In the suitable limit, the resulting phase diagram allows one to estimate the critical temperature of the equilibrium BKT transition, which is consistent with that obtained from the study of the dynamics in the Gaussian white noise limit.

Keywords: kuramoto model; transition; time; two dimensional; model; noise

Journal Title: Chaos
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.