LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning the metal insulator transition of vanadium dioxide on oxide nanosheets

Photo from wikipedia

For practical applications, tuning the metal-insulator transition (MIT) behavior of high-quality vanadium dioxide (VO2) on arbitrary substrates, such as Si and glass, is desirable. Here, we demonstrate the ability to… Click to show full abstract

For practical applications, tuning the metal-insulator transition (MIT) behavior of high-quality vanadium dioxide (VO2) on arbitrary substrates, such as Si and glass, is desirable. Here, we demonstrate the ability to tune the MIT temperature (TMIT) of VO2 films by growing them on NbWO6 (NWO) nanosheets on arbitrary substrates and varying the film thicknesses. The oxidation and crystal structure of VO2 films are determined by x-ray photoelectron spectroscopy and temperature-dependent x-ray diffraction, respectively. It is observed that as the film thickness increases, the TMIT also increases to the bulk value, 341 K, because of the increase in the rutile c-axis of VO2. The strain effect accompanying with the film thickness variation on NWO nanosheets contribute to the shortening of the rutile cR axis in thin films and, hence, the lowering of TMIT of VO2. Furthermore, the arbitrary underlying substrates have negligible influence on the MIT behavior of VO2 on NWO nanosheets. These results open up the possibility to more freely choose a technical substrate material for functional VO2 films and tune its MIT.

Keywords: insulator transition; vo2; vanadium dioxide; tuning metal; metal insulator

Journal Title: Applied Physics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.