LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of the photoelectrochemical properties of a CuGaSe2-based photocathode for water reduction induced by loading of a Cu-deficient layer at the p–n heterointerface

Photo from wikipedia

Photoelectrochemical activity for water reduction (H2 liberation) over a co-evaporated CuGaSe2 compact thin film modified with a CdS layer and Pt deposits under simulated sunlight (AM 1.5G) radiation was evaluated,… Click to show full abstract

Photoelectrochemical activity for water reduction (H2 liberation) over a co-evaporated CuGaSe2 compact thin film modified with a CdS layer and Pt deposits under simulated sunlight (AM 1.5G) radiation was evaluated, specifically focusing on the impact of a Cu-deficient layer (CDL) loaded on the top part of the CuGaSe2 film. It was found that the intentional loading of the CDL with an appropriate thickness was effective for achieving a large current flow and relatively positive photocurrent onset. The half-cell solar-to-hydrogen efficiency reached 6.6% over the best photocathode used. Moreover, the highest photocurrent onset potential of more than 0.9 V vs reversible hydrogen electrode was achieved over the photocathode based on the CuGaSe2 film having an extremely thick CDL (200 nm) with a relatively thick CdS layer (90 nm) due to efficient spatial separation of photogenerated carriers.

Keywords: water reduction; layer; deficient layer

Journal Title: Applied Physics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.