Kagome lattice, made of corner-sharing triangles, provides an excellent platform for hosting exotic topological quantum states. Here we systematically studied the magnetic and transport properties of RMn6Sn6 (R = Tb,… Click to show full abstract
Kagome lattice, made of corner-sharing triangles, provides an excellent platform for hosting exotic topological quantum states. Here we systematically studied the magnetic and transport properties of RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice. All the compounds have a collinear ferrimagnetic structure with different easy axis at low temperature. The low-temperature magnetoresistance (MR) is positive and has no tendency to saturate below 7 T, while the MR gradually declines and becomes negative with the increasing temperature. A large intrinsic anomalous Hall conductivity about 250 {\Omega}-1cm-1, 40 {\Omega}-1cm-1, 95 {\Omega}-1cm-1 is observed for TbMn6Sn6, DyMn6Sn6, HoMn6Sn6, respectively. Our results imply that RMn6Sn6 system is an excellent platform to discover other intimately related topological or quantum phenomena and also tune the electronic and magnetic properties in future studies.
               
Click one of the above tabs to view related content.