LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance

Photo by sotti from unsplash

In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a… Click to show full abstract

In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.

Keywords: gan multi; multi channel; alinn gan; channel; lattice matched; heterostructure

Journal Title: Applied Physics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.