LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduced nonradiative recombination rates in c-plane Al0.83In0.17N films grown on a nearly lattice-matched GaN substrate by metalorganic vapor phase epitaxy

Photo from wikipedia

A record-long room-temperature photoluminescence (PL) lifetime ( τPLRT) of approximately 70 ps was obtained for the sub-bandgap 3.7 eV emission band of a 300-nm-thick c-plane Al0.83In0.17N epilayer for the use in… Click to show full abstract

A record-long room-temperature photoluminescence (PL) lifetime ( τPLRT) of approximately 70 ps was obtained for the sub-bandgap 3.7 eV emission band of a 300-nm-thick c-plane Al0.83In0.17N epilayer for the use in cladding layers of an edge laser structure, which were grown by metalorganic vapor phase epitaxy on a low threading dislocation density nearly lattice-matched GaN substrate. The recorded τPLRT value was twice as long as previously reported ones, indicating half concentration of nonradiative recombination centers. Room-temperature spatially resolved cathodoluminescence intensity images for the 3.7 eV band revealed nearly zero carrier diffusion length, which is consistent with the fact that τPLRT of 70 ps is 1/35 of the near-band-edge emission of the GaN substrate (2.4 ns). As the PL decay curves for the 3.7 eV band were sufficiently fitted by the stretched exponential function, the emission likely originates from extended states such as impurities, point defects, and their complexes, as well as localized states of uneven potential profile.

Keywords: metalorganic vapor; al0 83in0; vapor phase; 83in0 17n; gan substrate; plane al0

Journal Title: Applied Physics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.