In this paper, we introduce a class of novel PT- δ-hyperbolic-function potentials composed of the Dirac δ(x) and hyperbolic functions, supporting fully real energy spectra in the non-Hermitian Hamiltonian. The… Click to show full abstract
In this paper, we introduce a class of novel PT- δ-hyperbolic-function potentials composed of the Dirac δ(x) and hyperbolic functions, supporting fully real energy spectra in the non-Hermitian Hamiltonian. The threshold curves of PT symmetry breaking are numerically presented. Moreover, in the self-focusing and defocusing Kerr-nonlinear media, the PT-symmetric potentials can also support the stable peakons, keeping the total power and quasi-power conserved. The unstable PT-symmetric peakons can be transformed into other stable peakons by the excitations of potential parameters. Continuous families of additional stable numerical peakons can be produced in internal modes around the exact peakons (even unstable). Further, we find that the stable peakons can always propagate in a robust form, remaining trapped in the slowly moving potential wells, which opens the way for manipulations of optical peakons. Other significant characteristics related to exact peakons, such as the interaction and power flow, are elucidated in detail. These results will be useful in explaining the related physical phenomena and designing the related physical experiments.
               
Click one of the above tabs to view related content.