We extend a recent classical mechanical analog of Bohr's atom consisting of a scalar field coupled to a massive point-like particle [P. Jamet and A. Drezet, "A mechanical analog of… Click to show full abstract
We extend a recent classical mechanical analog of Bohr's atom consisting of a scalar field coupled to a massive point-like particle [P. Jamet and A. Drezet, "A mechanical analog of Bohr's atom based on de Broglie's double-solution approach," Chaos 31, 103120 (2021)] by adding and studying the contribution of a uniform weak magnetic field on their dynamics. In doing so, we are able to recover the splitting of the energy levels of the atom called Zeeman's effect within the constraints of our model and in agreement with the semiclassical theory of Sommerfeld. This result is obtained using Larmor's theorem for both the field and the particle, associating magnetic effects with inertial Coriolis forces in a rotating frame of reference. Our work, based on the old "double solution" theory of de Broglie, shows that a dualistic model involving a particle guided by a scalar field can reproduce the normal Zeeman effect.
               
Click one of the above tabs to view related content.