LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complexity in subnetworks of a peroxidase-oxidase reaction model.

Photo by mezidi_zineb from unsplash

The peroxidase-oxidase (PO) reaction is a paradigmatic (bio)chemical system well suited to study the organization and stability of self-sustained oscillatory phases typically present in nonlinear systems. The PO reaction can… Click to show full abstract

The peroxidase-oxidase (PO) reaction is a paradigmatic (bio)chemical system well suited to study the organization and stability of self-sustained oscillatory phases typically present in nonlinear systems. The PO reaction can be simulated by the state-of-the-art Bronnikova-Fedkina-Schaffer-Olsen model involving ten coupled ordinary differential equations. The complex and dynamically rich distribution of self-sustained oscillatory stability phases of this model was recently investigated in detail. However, would it be possible to understand aspects of such a complex model using much simpler models? Here, we investigate stability phases predicted by three simple four-variable subnetworks derived from the complete model. While stability diagrams for such subnetworks are found to be distorted compared to those of the complete model, we find them to surprisingly preserve significant features of the original model as well as from the experimental system, e.g., period-doubling and period-adding scenarios. In addition, return maps obtained from the subnetworks look very similar to maps obtained in the experimental system under different conditions. Finally, two of the three subnetwork models are found to exhibit quint points, i.e., recently reported singular points where five distinct stability phases coalesce. We also provide experimental evidence that such quint points are present in the PO reaction.

Keywords: oxidase reaction; stability phases; reaction; peroxidase oxidase; model

Journal Title: Chaos
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.