LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant

Photo from wikipedia

We study the dynamic evolution of COVID-19 caused by the Omicron variant via a fractional susceptible-exposed-infected-removed (SEIR) model. Preliminary data suggest that the symptoms of Omicron infection are not prominent… Click to show full abstract

We study the dynamic evolution of COVID-19 caused by the Omicron variant via a fractional susceptible-exposed-infected-removed (SEIR) model. Preliminary data suggest that the symptoms of Omicron infection are not prominent and the transmission is, therefore, more concealed, which causes a relatively slow increase in the detected cases of the newly infected at the beginning of the pandemic. To characterize the specific dynamics, the Caputo-Hadamard fractional derivative is adopted to refine the classical SEIR model. Based on the reported data, we infer the fractional order and time-dependent parameters as well as unobserved dynamics of the fractional SEIR model via fractional physics-informed neural networks. Then, we make short-time predictions using the learned fractional SEIR model.

Keywords: omicron variant; model; model data; seir model; fractional seir

Journal Title: Chaos
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.