On average once every four years, the Tropical Pacific warms considerably during events called El Niño, leading to weather disruptions over many regions on Earth. Recent machine-learning approaches to El… Click to show full abstract
On average once every four years, the Tropical Pacific warms considerably during events called El Niño, leading to weather disruptions over many regions on Earth. Recent machine-learning approaches to El Niño prediction, in particular, Convolutional Neural Networks (CNNs), have shown a surprisingly high skill at relatively long lead times. In an attempt to understand this high skill, we here use data from distorted physics simulations with the intermediate-complexity Zebiak-Cane model to determine what aspects of El Niño physics are represented in a specific CNN-based classification method. We find that the CNN can adequately correct for distortions in the ocean adjustment processes, but that the machine-learning method has far more trouble in dealing with distortions in upwelling feedback strength.
               
Click one of the above tabs to view related content.