LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Network topologies for maximal organismal health span and lifespan.

Photo from wikipedia

The population dynamics of human health and mortality can be jointly captured by complex network models using scale-free network topology. To validate and understand the choice of scale-free networks, we… Click to show full abstract

The population dynamics of human health and mortality can be jointly captured by complex network models using scale-free network topology. To validate and understand the choice of scale-free networks, we investigate which network topologies maximize either lifespan or health span. Using the Generic Network Model (GNM) of organismal aging, we find that both health span and lifespan are maximized with a "star" motif. Furthermore, these optimized topologies exhibit maximal lifespans that are not far above the maximal observed human lifespan. To approximate the complexity requirements of the underlying physiological function, we then constrain network entropies. Using non-parametric stochastic optimization of network structure, we find that disassortative scale-free networks exhibit the best of both lifespan and health span. Parametric optimization of scale-free networks behaves similarly. We further find that higher maximum connectivity and lower minimum connectivity networks enhance both maximal lifespans and health spans by allowing for more disassortative networks. Our results validate the scale-free network assumption of the GNM and indicate the importance of disassortativity in preserving health and longevity in the face of damage propagation during aging. Our results highlight the advantages provided by disassortative scale-free networks in biological organisms and subsystems.

Keywords: network; health; health span; scale free; lifespan

Journal Title: Chaos
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.