LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finding influential edges in multilayer networks: Perspective from multilayer diffusion model.

Photo from wikipedia

With the popularization of social network analysis, information diffusion models have a wide range of applications, such as viral marketing, publishing predictions, and social recommendations. The emergence of multiplex social… Click to show full abstract

With the popularization of social network analysis, information diffusion models have a wide range of applications, such as viral marketing, publishing predictions, and social recommendations. The emergence of multiplex social networks has greatly enriched our daily life; meanwhile, identifying influential edges remains a significant challenge. The key problem lies that the edges of the same nodes are heterogeneous at different layers of the network. To solve this problem, we first develop a general information diffusion model based on the adjacency tensor for the multiplex network and show that the n-mode singular value can control the level of information diffusion. Then, to explain the suppression of information diffusion through edge deletion, efficient edge eigenvector centrality is proposed to identify the influence of heterogeneous edges. The numerical results from synthetic networks and real-world multiplex networks show that the proposed strategy outperforms some existing edge centrality measures. We devise an experimental strategy to demonstrate that influential heterogeneous edges can be successfully identified by considering the network layer centrality, and the deletion of top edges can significantly reduce the diffusion range of information across multiplex networks.

Keywords: information; network; diffusion; influential edges; information diffusion; diffusion model

Journal Title: Chaos
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.