Remote synchronization (RS) may take an important role in brain functioning and its study has attracted much attention in recent years. So far, most studies of RS are focused on… Click to show full abstract
Remote synchronization (RS) may take an important role in brain functioning and its study has attracted much attention in recent years. So far, most studies of RS are focused on the Stuart-Landau oscillators with mean-field coupling. However, realistic cases may have more complicated couplings and behaviors, such as the brain networks. To make the study of RS a substantial progress toward realistic situations, we here present a model of RS with phase frustration and show that RS can be induced for those systems where no RS exists when there is no phase frustration. By numerical simulations on both the Stuart-Landau and Kuramoto oscillators, we find that the optimal range of RS depends on the match of phase frustrations between the hub and leaf nodes and a fixed relationship of this match is figured out. While for the non-optimal range of RS, we find that RS exists only in a linear band between the phase frustrations of the hub and leaf nodes. A brief theoretical analysis is provided to explain these results.
               
Click one of the above tabs to view related content.