LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved resistance model of positive subsonic plasma channels in water

Photo from wikipedia

The subsonic plasma channel and water can be regarded as series resistors in the pre-breakdown stage of sub-millisecond pulsed discharge in conductive water. An improved resistance model of the positive… Click to show full abstract

The subsonic plasma channel and water can be regarded as series resistors in the pre-breakdown stage of sub-millisecond pulsed discharge in conductive water. An improved resistance model of the positive subsonic plasma channel is proposed. The gap resistance and the morphology of the bubble cluster and the plasma channel inside it are obtained from the electrical measurement and optical observation, respectively. The resistance of the plasma channel in the strong-ionization stage is calculated using the small-current arc resistance model. The improved model of the water resistance is established by analyzing the relationship between its equivalent cross-sectional area and its length in an uneven electric field. The resistance of the plasma channel in the weak-ionization stage is calculated. The resistance, voltage, and energy in the gap are analyzed based on the improved resistance model. The plasma channel's resistance is far less than the water resistance. The low voltage drop in the plasma channel leads to a high electric potential in the plasma channel's head, which is conducive to the plasma channel's development. 97% of the total energy in the pre-breakdown stage is consumed by the water resistor. The improved resistance model is helpful to supplement the development mechanism of the sub-millisecond pulsed discharge in water.

Keywords: resistance model; water; plasma channel; plasma; resistance

Journal Title: Physics of Plasmas
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.