LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved approach for calculating energy landscape of gene networks from moment equations.

Photo from wikipedia

The energy landscape theory has widely been applied to study the stochastic dynamics of biological systems. Different methods have been developed to quantify the energy landscape for gene networks, e.g.,… Click to show full abstract

The energy landscape theory has widely been applied to study the stochastic dynamics of biological systems. Different methods have been developed to quantify the energy landscape for gene networks, e.g., using Gaussian approximation (GA) approach to calculate the landscape by solving the diffusion equation approximately from the first two moments. However, how high-order moments influence the landscape construction remains to be elucidated. Also, multistability exists extensively in biological networks. So, how to quantify the landscape for a multistable dynamical system accurately, is a paramount problem. In this work, we prove that the weighted summation from GA (WSGA), provides an effective way to calculate the landscape for multistable systems and limit cycle systems. Meanwhile, we proposed an extended Gaussian approximation (EGA) approach by considering the effects of the third moments, which provides a more accurate way to obtain probability distribution and corresponding landscape. By applying our generalized EGA approach to two specific biological systems: multistable genetic circuit and synthetic oscillatory network, we compared EGA with WSGA by calculating the KL divergence of the probability distribution between these two approaches and simulations, which demonstrated that the EGA provides a more accurate approach to calculate the energy landscape.

Keywords: landscape gene; energy landscape; gene networks; landscape; approach

Journal Title: Chaos
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.