The Brusselator has been used as a prototype model for autocatalytic reactions and, in particular, for the Belousov-Zhabotinsky reaction. When coupled at the diffusive limit, the Brusselator undergoes a Turing… Click to show full abstract
The Brusselator has been used as a prototype model for autocatalytic reactions and, in particular, for the Belousov-Zhabotinsky reaction. When coupled at the diffusive limit, the Brusselator undergoes a Turing bifurcation resulting in the formation of classical Turing patterns, such as spots, stripes, and spirals in two spatial dimensions. In the present study, we use generic nonlocally coupled Brusselators and show that in the limit of the coupling range R→1 (diffusive limit), the classical Turing patterns are recovered, while for intermediate coupling ranges and appropriate parameter values, chimera states are produced. This study demonstrates how the parameters of a typical nonlinear oscillator can be tuned so that the coupled system passes from spatially stable Turing structures to dynamical spatiotemporal chimera states.
               
Click one of the above tabs to view related content.