LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

From Turing patterns to chimera states in the 2D Brusselator model.

Photo by magicpattern from unsplash

The Brusselator has been used as a prototype model for autocatalytic reactions and, in particular, for the Belousov-Zhabotinsky reaction. When coupled at the diffusive limit, the Brusselator undergoes a Turing… Click to show full abstract

The Brusselator has been used as a prototype model for autocatalytic reactions and, in particular, for the Belousov-Zhabotinsky reaction. When coupled at the diffusive limit, the Brusselator undergoes a Turing bifurcation resulting in the formation of classical Turing patterns, such as spots, stripes, and spirals in two spatial dimensions. In the present study, we use generic nonlocally coupled Brusselators and show that in the limit of the coupling range R→1 (diffusive limit), the classical Turing patterns are recovered, while for intermediate coupling ranges and appropriate parameter values, chimera states are produced. This study demonstrates how the parameters of a typical nonlinear oscillator can be tuned so that the coupled system passes from spatially stable Turing structures to dynamical spatiotemporal chimera states.

Keywords: chimera states; turing patterns; patterns chimera; model; states brusselator

Journal Title: Chaos
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.