LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground state degeneracy on torus in a family of ZN toric code

Photo by diggity_dog from unsplash

Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic) excitations, topological entanglement entropy, and robust ground state degeneracy that does not… Click to show full abstract

Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic) excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or spontaneous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary condition regardless of the choice of the system sizes L1 and L2 in each direction. In this work, we introduce a family of extensions of the Kitaev toric code to N level spins (N ≥ 2). The model realizes topologically ordered phases or symmetry-protected topological phases depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may be unique, depending on L1 and L2, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting anyon species.

Keywords: toric code; degeneracy; ground state; state degeneracy

Journal Title: Journal of Mathematical Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.