LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of pulse rise time on electron dynamics properties in nitrogen–oxygen mixture under repetitive nanosecond pulses

Photo from wikipedia

The effects of pulse rise time on the temporal evolution of electron energy and density under repetitive nanosecond pulses in atmospheric nitrogen with 100 ppm oxygen impurities are investigated in this… Click to show full abstract

The effects of pulse rise time on the temporal evolution of electron energy and density under repetitive nanosecond pulses in atmospheric nitrogen with 100 ppm oxygen impurities are investigated in this paper by a two-dimensional particle-in-cell/Monte Carlo collision model. It is found that the peak value of mean electron energy increases with decreasing pulse rise time in the single pulsed discharge. However, in the repetitive pulsed discharge approximated by pre-ionization, the peak value of mean electron energy no longer varies with the pulse rise time, showing a saturation trend with decreasing pulse rise time. Whether or not pre-ionization is present, the time required for the mean electron energy to reach its peak is approximately equal to the pulse rise time. It is worth noting that the presence of pre-ionization enhances the tracking ability of the mean electron energy to the pulse waveform during the pulse rise edge. Although after the peak of the pulse, the mean electron energy terminates the tracking process to pulse waveform due to the formation of high-density avalanches and even streamers, its energy decay rate gradually decreases with the increase in the pre-ionization density. Therefore, when the pulse repetitive frequency is greatly increased or the pre-ionization density is increased by other means, it is possible to achieve the complete control of the mean electron energy by pulse waveform modulation.

Keywords: pulse rise; rise time; electron energy; electron

Journal Title: Physics of Plasmas
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.