LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Information geometry and Bose-Einstein condensation.

Photo from wikipedia

It is a long held conjecture in the connection between information geometry (IG) and thermodynamics that the curvature endowed by IG diverges at phase transitions. Recent work on the IG… Click to show full abstract

It is a long held conjecture in the connection between information geometry (IG) and thermodynamics that the curvature endowed by IG diverges at phase transitions. Recent work on the IG of Bose-Einstein (BE) gases challenged this conjecture by saying that in the limit of fugacity approaching unit-where BE condensation is expected-the curvature does not diverge; rather, it converges to zero. However, as the discontinuous behavior that identifies condensation is only observed at the thermodynamic limit, a study of the IG curvature at a finite number of particles, N, is in order from which the thermodynamic behavior can be observed by taking the thermodynamic limit ( Nā†’āˆž) posteriorly. This article presents such a study. We find that for a trapped gas, as N increases, the values of curvature decrease proportionally to a power of N, while the temperature at which the maximum value of curvature occurs approaches the usually defined critical temperature. This means that, in the thermodynamic limit, the curvature has a limited value where a phase transition is observed, contradicting the forementioned conjecture.

Keywords: limit; geometry; bose einstein; curvature; information geometry

Journal Title: Chaos
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.