Topological-material-based Josephson junctions have the potential to be used to host Majorana zero modes and to construct topological qubits. For operating the topological qubits at an appropriate timescale to avoid… Click to show full abstract
Topological-material-based Josephson junctions have the potential to be used to host Majorana zero modes and to construct topological qubits. For operating the topological qubits at an appropriate timescale to avoid decoherence and quasiparticle poisoning, one would eventually go to the time domain and embed the topological qubits into quantum electrodynamic circuits. Here, we constructed a topological-insulator-nanowire-based transmon qubit and demonstrated its strong coupling to a coplanar waveguide resonator. The flux-tunable spectrum and Rabi oscillations with a qubit lifetime [Formula: see text] of [Formula: see text] were observed. Such a hybrid platform, containing topological materials and quantum electrodynamic circuits, can further be used to study the physical properties such as Majorana zero modes in topological quantum circuits.
               
Click one of the above tabs to view related content.