LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-correlated luminescence blinking in InGaN single quantum wells

Photo from wikipedia

The blinking phenomenon in InGaN single quantum wells is a phenomenon where localized photoluminescence changes over time. Understanding its physics is important for the manufacture of more efficient light emission… Click to show full abstract

The blinking phenomenon in InGaN single quantum wells is a phenomenon where localized photoluminescence changes over time. Understanding its physics is important for the manufacture of more efficient light emission diodes. We present a study using two InGaN single quantum well samples, emitting at 460 and 510 nm wavelength, respectively. We confirmed that the luminescence intensity fluctuates in localized blinking regions, and we found that these optical variations are not random but are instead correlated in pairs, with either positive or negative coefficient, to a distant reference blinking point. Measurements were performed to obtain standard deviation and cross-correlation maps. Invoking the quantum confined Stark effect, we realized a simple phenomenological model that shows how charge carriers are exchanged among pairs of adjacent opposite correlation regions. As a result, it is suggested that the phenomenon is caused by fluctuations in the number of these exchanged carriers. Our model gives an explanation for the blinking phenomenon in InGaN single quantum wells, and it is important for a deeper understanding to InGaN-based materials.

Keywords: time; quantum; ingan single; single quantum; luminescence; quantum wells

Journal Title: Applied Physics Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.