LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intense narrowband terahertz pulses produced by obliquely colliding laser pulses in helium gas

Photo by rockstaar_ from unsplash

A practical configuration for generating narrowband terahertz (THz) pulses based on plasma dipole oscillations (PDOs) is studied using two-dimensional particle-in-cell simulations. In this scheme, two slightly detuned laser pulses collide… Click to show full abstract

A practical configuration for generating narrowband terahertz (THz) pulses based on plasma dipole oscillations (PDOs) is studied using two-dimensional particle-in-cell simulations. In this scheme, two slightly detuned laser pulses collide obliquely in a helium gas. Plasma strips are generated along the paths of the laser pulses by field ionization. The PDO created in the overlap region of the two laser pulses emits a THz pulse with a peak electric field strength of a few gigavolt per meter. An energy conversion efficiency of 0.542 × 10 − 3 is achieved for laser pulse intensities 4.82 × 10 16   W / c m 2, a spot radii of 5  μ m, and a collision angle of 10.8 °. A force balance model is extended for the obliquely colliding configuration of the pulses. As the complications, such as generating plasmas separately or aligning the beams with preformed plasma, are eliminated from our new configuration, this makes a future experimental study of PDO more straightforward.

Keywords: narrowband terahertz; laser; helium gas; obliquely colliding; laser pulses

Journal Title: Physics of Plasmas
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.