LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-eddy simulation of magnetohydrodynamics and heat transfer in annular pipe liquid metal flow

Photo by anniespratt from unsplash

Turbulent structures in a concentric annular pipe within a uniform transverse magnetic field are examined for a liquid metal flow. Large-eddy simulations are performed to study the effect of magnetic… Click to show full abstract

Turbulent structures in a concentric annular pipe within a uniform transverse magnetic field are examined for a liquid metal flow. Large-eddy simulations are performed to study the effect of magnetic field on turbulence suppression and heat transfer within this geometry. At the characteristic Prandtl number of liquid metals, the smallest scales based on temperature fluctuations are much larger than those of the velocity, which allows to resolve all the temperature scales with sufficient accuracy. The calculations are run at Reynolds number 8900 for three different Hartmann numbers, Ha=40,60,120. The comparison with available direct numerical simulation data shows encouraging agreement. The main findings of this work show a circumferential dependency of the flow characteristics on the local orientation of the magnetic field, with increased anisotropy observed at all Hartmann numbers studied. Anisotropic effects of the magnetic field are predominant for Ha = 60 and Ha = 120 causing turbulence to deviate from its conventional state. At these Hartmann numbers, a partial redistribution of the turbulent kinetic energy from the axial and radial components to the azimuthal component is observed. This effect, observed here for the first time, appears to be related to the appearance of coexisting quasi two-dimensional (2D) and three-dimensional (3D) turbulence states. Moreover, large skin friction increments are also observed at Ha = 60 and Ha = 120, while coherent structures stretching and streak suppression are found for all three Hartmann numbers.

Keywords: liquid metal; magnetohydrodynamics; annular pipe; flow; magnetic field; metal flow

Journal Title: Physics of Fluids
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.