Radiation-induced property changes in materials originate from the energy transfer from an incoming particle to the existing lattice, displacing atoms. The displaced atoms can cause the formation of extended defects… Click to show full abstract
Radiation-induced property changes in materials originate from the energy transfer from an incoming particle to the existing lattice, displacing atoms. The displaced atoms can cause the formation of extended defects including dislocation loops, voids, or precipitates. The non-equilibrium defects created during damage events determine the extent of these larger defects and are a function of dose rate, material, and temperature. However, these defects are transient and can only be probed indirectly. This work presents direct experimental measurements and evidence of irradiated non-equilibrium vacancy formation, where in situ positron annihilation spectroscopy was used to prove the generation of non-equilibrium defects in silicon.
               
Click one of the above tabs to view related content.