LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation and analysis of contact erosion by high-current and low-voltage air arc considering the movement of arc

Photo from wikipedia

When a low-voltage circuit breaker (LVCB) breaks a high current, the contact erosion caused by the arc greatly reduces the LVCB’s breaking performance and service lifetime. Therefore, this paper uses… Click to show full abstract

When a low-voltage circuit breaker (LVCB) breaks a high current, the contact erosion caused by the arc greatly reduces the LVCB’s breaking performance and service lifetime. Therefore, this paper uses AgW alloy contacts as a research object, which are commonly used for breaking high currents, and establishes a contact erosion model for an LVCB with a breaking current of 14 kA. The model considers the energy balance of a contact surface and uses a solidification and melting model and a dynamic mesh model to deal with the phase transition problem of the contact material and introduces the arc movement into this model. Using this model, the contact melting and evaporation width, erosion depth, erosion rate, and erosion mass are calculated when Ag and AgW30 and AgW70 alloys are used as contact materials. The influence of W-content on the erosion characteristics of a contact is analyzed. The results show that, although the introduction of element W significantly reduces the erosion mass, it advances the time when the melting point and boiling point are reached. The position, width, and depth of the melting pool and melting layer thickness change with the movement of the arc. In the process of contact erosion considering the movement of the arc, the introduction of W element will increase the width of the molten pool and the solidification time of the molten material. Especially when the mass percentage of element W in the contact material reached 70%, the solidification time of the molten material greatly increased, which weakened the welding resistance of the contact.

Keywords: contact erosion; contact; erosion; model; movement arc

Journal Title: AIP Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.