Sorting biological cells in heterogeneous cell populations is a critical task required in a variety of biomedical applications and therapeutics. Microfluidic methods are a promising pathway toward establishing label-free sorting… Click to show full abstract
Sorting biological cells in heterogeneous cell populations is a critical task required in a variety of biomedical applications and therapeutics. Microfluidic methods are a promising pathway toward establishing label-free sorting based on cell intrinsic biophysical properties, such as cell size and compliance. Experiments and numerical studies show that microchannels decorated with diagonal ridges can be used to separate cell by stiffness in a Newtonian fluid. Here, we use computational modeling to probe stiffness-based cell sorting in ridged microchannels with a power-law shear thinning fluid. We consider compliant cells with a range of elasticities and examine the effects of ridge geometry on cell trajectories in microchannel with shear thinning fluid. The results reveal that shear thinning fluids can significantly enhance the resolution of stiffness-based cell sorting compared to Newtonian fluids. We explain the mechanism leading to the enhanced sorting in terms of hydrodynamic forces acting on cells during their interactions with the microchannel ridges.
               
Click one of the above tabs to view related content.