LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Active steering of omni-droplets on slippery cross-scale arrays by bi-directional vibration

Photo from wikipedia

Directed droplet manipulation is paramount in various applications, including chemical micro-reaction and biomedical analysis. The existing strategies include some kinds of gradients (structure, inherent wettability, and charge density), whereas they… Click to show full abstract

Directed droplet manipulation is paramount in various applications, including chemical micro-reaction and biomedical analysis. The existing strategies include some kinds of gradients (structure, inherent wettability, and charge density), whereas they suffer from several limitations, such as low velocity, limited volume range, poor durability, and inefficient environmental suitability. Moreover, active bi-directional reversal of omni-droplets remains challenging because one kind of microstructure at a single scale cannot acquire two kinds of net results of mechanical interaction. Herein, we report an active and directional steering of omni-droplets utilizing bi-directional (vertical and horizontal) vibration on slippery cross-scale structures consisting of macro millimeter-scale circular arc arrays and micro/nanometer-scale slant ratchet arrays, which are fabricated by femtosecond laser patterned oblique etching and lubricant infusion. The physical mechanism of active droplet steering lies in the relative competition between the forces under vertical and horizontal vibration, which mainly arise from the circular arc arrays and slant ratchet arrays, respectively. Various steering modes, including climbing and programmable manipulation, can be realized. Our work is applicable to a wide range of potential applications, including circuit on/off and droplet-based chemical micro-reaction, particularly in the field of high-throughput omni-droplets operation.

Keywords: scale; cross scale; slippery cross; steering omni; omni droplets; vibration

Journal Title: Applied Physics Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.