Dzyaloshinskii–Moriya (DM) interactions cause many interesting physical features, such as topologically nontrivial magnetic skyrmions and chiral domain walls. These interactions become more pronounced in low-dimensional systems. We investigated a one-dimensional… Click to show full abstract
Dzyaloshinskii–Moriya (DM) interactions cause many interesting physical features, such as topologically nontrivial magnetic skyrmions and chiral domain walls. These interactions become more pronounced in low-dimensional systems. We investigated a one-dimensional Heisenberg spin-1/2 chain with an asymmetric DM interaction. The results show that, upon applying a nonzero DM interaction, the Néel ground state transitions to a spin chiral phase. Moreover, using the mean-field approximation, we obtain the dispersion of the energy spectrum, from which the z-axis spin chirality is calculated as a function of the strength of the DM interaction for low-lying excitations. The results indicate that the DM interaction facilitates chirality for D z ≤ J and induces a spin-gapped chiral state.
               
Click one of the above tabs to view related content.