LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin chirality driven by the Dzyaloshinskii–Moriya interaction in one-dimensional antiferromagnetic chain

Photo from wikipedia

Dzyaloshinskii–Moriya (DM) interactions cause many interesting physical features, such as topologically nontrivial magnetic skyrmions and chiral domain walls. These interactions become more pronounced in low-dimensional systems. We investigated a one-dimensional… Click to show full abstract

Dzyaloshinskii–Moriya (DM) interactions cause many interesting physical features, such as topologically nontrivial magnetic skyrmions and chiral domain walls. These interactions become more pronounced in low-dimensional systems. We investigated a one-dimensional Heisenberg spin-1/2 chain with an asymmetric DM interaction. The results show that, upon applying a nonzero DM interaction, the Néel ground state transitions to a spin chiral phase. Moreover, using the mean-field approximation, we obtain the dispersion of the energy spectrum, from which the z-axis spin chirality is calculated as a function of the strength of the DM interaction for low-lying excitations. The results indicate that the DM interaction facilitates chirality for D z ≤ J and induces a spin-gapped chiral state.

Keywords: interaction; dzyaloshinskii moriya; chirality; one dimensional; spin chirality

Journal Title: AIP Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.