LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and numerical investigations of effects of ship superstructures on wind-induced loads for benchmarking

Photo from wikipedia

For a representative large modern containership, the effects of a deck container arrangement on the wind-induced loads were systematically investigated using physical model tests and numerical computations. Numerical simulations based… Click to show full abstract

For a representative large modern containership, the effects of a deck container arrangement on the wind-induced loads were systematically investigated using physical model tests and numerical computations. Numerical simulations based on various turbulence models were performed to validate our predictions against comparative wind tunnel measurements. Not only standard two-equation turbulence models of the unsteady Reynolds-Averaged Navier–Stokes (URANS) equations solver but also the improved delayed detached eddy simulation (IDDES) and large eddy simulation (LES) turbulence models were used to determine their limits in the prediction of aerodynamic loads. Systematic discretization studies ensured adequate discretization independent predictions. With URANS, numerically predicted wind forces and moments in near-head and near-tail winds were compared favorably with the measured data. However, in oblique winds, URANS predictions deviated from measurements. In oblique winds, flow separations were pronounced; therefore, the flow was strongly transient. Consequently, a two-equation turbulence model was inappropriate. With IDDES, more accurate predictions were achieved, especially in oblique winds. With LES, although the computational effort was high, the agreement of the computed forces and moments with the measured values was superior. Flow details were also presented and discussed. The container arrangement on deck showed major effects on aerodynamic forces and moments. A tarpaulin covering the containers on deck reduced wind resistance by up to 70%.

Keywords: induced loads; forces moments; oblique winds; wind induced; turbulence models

Journal Title: Physics of Fluids
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.