LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical analysis of a nanosecond repetitively pulsed plasma-assisted counterflow diffusion flame

Photo from wikipedia

A computationally efficient model is proposed to analyze plasma-assisted combustion using nanosecond repetitive pulsed (NRP) plasmas. The NRP plasma discharge is placed in the oxidizer stream of a counter-flow diffusion… Click to show full abstract

A computationally efficient model is proposed to analyze plasma-assisted combustion using nanosecond repetitive pulsed (NRP) plasmas. The NRP plasma discharge is placed in the oxidizer stream of a counter-flow diffusion flame. The effect of changing the flow rate and the pulse repetition frequency (PRF) of a continuous NRP plasma discharge on the temperature and species profiles of a counter-flow diffusion flame is investigated numerically. The results confirm that oxygen atom and nitrogen vibrational states are the most important species to enhance combustion. The results also show that kinetic effects are much more significant for higher PRF and lower pulse voltage. In addition, when steady plasma profiles are used instead of unsteady plasma profiles, the extinction strain rates increase by 25.8%, 21.1%, and 10.8% for PRF equal to 1, 2, and 4 kHz, respectively.

Keywords: numerical analysis; plasma; plasma assisted; diffusion flame

Journal Title: Journal of Applied Physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.