Broadband motion control in flexure-based stages can benefit from passive damping enhancement at their flexible structures. This paper develops a damped two-axis axially collocated (2-AC) flexure hinge with damping-enabling hybrid… Click to show full abstract
Broadband motion control in flexure-based stages can benefit from passive damping enhancement at their flexible structures. This paper develops a damped two-axis axially collocated (2-AC) flexure hinge with damping-enabling hybrid inserts and analytically derives its loss factor model based on hybrid (empirical and analytical) compliance modeling and shearing damping modeling. The analytical loss factor model is verified by finite element analysis. It is seen that the geometric parameters of the diameter and slope angle of the insert are sensitive to the hinge’s loss factor based on the theoretical loss factor model, especially in low-frequency and resonant zone. The actual experiments and finite element simulation indicate that embedding the hybrid inserts into the 2-AC flexure hinge can improve the damping performance of the hinge.
               
Click one of the above tabs to view related content.