LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alpha-phase gallium oxide-based UVC photodetector with high sensitivity and visible blindness

Photo by ldxcreative from unsplash

This paper describes the heteroepitaxial growth of high-quality alpha-phase gallium oxide (α-Ga2O3) on a sapphire substrate without a buffer layer via the hydride vapor phase epitaxy method. Here, compressive strain… Click to show full abstract

This paper describes the heteroepitaxial growth of high-quality alpha-phase gallium oxide (α-Ga2O3) on a sapphire substrate without a buffer layer via the hydride vapor phase epitaxy method. Here, compressive strain arising from the difference in lattice constants between the substrate and α-Ga2O3 is relieved near the interface, resulting in a high crystal quality of 32.72 arcsec (full width at half maximum value) in the high-resolution x-ray diffraction 2θ scan spectrum. Subsequently, the fabricated hetero α-Ga2O3-based photodetector with a metal–semiconductor–metal structure operating under ultraviolet radiation in the C-band (UVC) demonstrates a high UVC responsivity of 5 × 102 A W−1 and a high visible blindness of 8.14 × 104 at 235 nm. The photodetector utilizes photogenerated holes trapped near the interface of the metal electrode, inducing amplified electron current flow. The developed hetero α-Ga2O3-based UVC photodetector can be used to detect early signs of fire, flames, or corona discharge in visible light environments for social and industrial safety applications.

Keywords: gallium oxide; phase gallium; photodetector; alpha phase; phase; visible blindness

Journal Title: APL Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.